Apoprotein B, Small‐Dense LDL and Impaired HDL Remodeling Is Associated With Larger Plaque Burden and More Noncalcified Plaque as Assessed by Coronary CT Angiography and Intravascular Ultrasound With Radiofrequency Backscatter: Results From the ATLANTA I Study
نویسندگان
چکیده
BACKGROUND Apoprotein B-containing lipoproteins are atherogenic, but atheroprotective functions of apoprotein A-containing high-density lipoprotein (HDL) particles are poorly understood. The association between lipoproteins and plaque components by coronary computed tomography angiography (CTA) and intravascular ultrasound with radiofrequency backscatter (IVUS/VH) has not been evaluated. METHODS AND RESULTS Quantitative, 3-dimensional plaque measurements were performed in 60 patients with CTA and IVUS/VH. Apoproteins, lipids, and HDL subpopulations were measured with 2-dimensional (2D) gel electrophoresis, and correlation was assessed with univariate and multivariable models. ApoB particles were associated with a higher proportion of noncalcified plaque (NCP) and a lower proportion of calcified plaque (small, dense low-density lipoprotein cholesterol and high-density NCP: r=0.3, P=0.03; triglycerides and low-density NCP: r=0.34, P=0.01). Smaller, dense, lipid-poor HDL particles were associated with a shift from calcified plaque to NCP on CTA (α3-HDL% and low-density NCP: r=0.32, P=0.02) and with larger plaque volume on IVUS/VH (α4-HDL%: r=0.41, P=0.01; α3-HDL%: r=0.37, P=0.03), because of larger dense calcium (α4-HDL%: r=0.37, P=0.03), larger fibrous tissue (α4-HDL%: r=0.34, P=0.04), and larger necrotic core (α4-HDL%: r=0.46, P<0.01; α3-HDL%: r=0.37, P=0.03). Larger lipid-rich HDL particles were associated with less low-density NCP on CTA (α2-HDL%: r=-0.34, P=0.02; α1-HDL%: r=-0.28, P=0.05), with smaller plaque volume on IVUS/VH (pre-α2-HDL: r=-0.33, P=0.05; α1-HDL%: r=-0.41, P=0.01; pre-α2-HDL: r=-0.33, P=0.05) and with less necrotic core (α1-HDL: r=-0.42, P<0.01; pre-α2-HDL: r=-0.38, P=0.02; α2-HDL: r=-0.35, P=0.03; pre-α1-HDL: r=-0.34, P=0.04). Pre-β2-HDL was associated with less calcification and less stenosis by both modalities. CONCLUSIONS ApoB and small HDL particles are associated with larger plaque burden and more noncalcified plaque, whereas larger HDL and pre-β2-HDL particles are associated with plaque burden and less noncalcified plaque by both CTA and IVUS/VH.
منابع مشابه
Prospective validation of standardized, 3-dimensional, quantitative coronary computed tomographic plaque measurements using radiofrequency backscatter intravascular ultrasound as reference standard in intermediate coronary arterial lesions: results from the ATLANTA (assessment of tissue characteristics, lesion morphology, and hemodynamics by angiography with fractional flow reserve, intravascular ultrasound and virtual histology, and noninvasive computed tomography in atherosclerotic plaques) I study.
OBJECTIVES This study sought to determine the accuracy of 3-dimensional, quantitative measurements of coronary plaque by computed tomography angiography (CTA) against intravascular ultrasound with radiofrequency backscatter analysis (IVUS/VH). BACKGROUND Quantitative, 3-dimensional coronary CTA plaque measurements have not been validated against IVUS/VH. METHODS Sixty patients in a prospect...
متن کاملProspective Validation that Vulnerable Plaque Associated with Major Adverse Outcomes Have Larger Plaque Volume, Less Dense Calcium, and More Non-Calcified Plaque by Quantitative, Three-Dimensional Measurements Using Intravascular Ultrasound with Radiofrequency Backscatter Analysis
Whether quantitative, two-dimensional, and three-dimensional plaque measurements by intravascular ultrasound with radiofrequency backscatter (IVUS/VH) are different between intermediate lesions with or without major adverse cardiovascular events (MACE) is unknown. IVUS/VH-derived parameters were compared in 60 patients with an intermediate coronary lesion (40-70 %) between lesions that did or d...
متن کاملLow- to high-density lipoprotein cholesterol ratio followed by coronary computed tomography angiography improves coronary plaque classification accuracy
Coronary computed tomography angiography (CCTA) is a noninvasive test for detection and analysis of coronary plaques morphology and classification. The low- to high-density lipoprotein cholesterol (L/H) ratio is associated with plaques vulnerability. The study aims to investigate the diagnostic accuracy of CCTA and L/H ratio for plaques classification. We enrolled 212 patients with coronary art...
متن کاملDistribution of ultrasonic radiofrequency signal amplitude detects lipids in atherosclerotic plaque of coronary arteries: an ex-vivo study
BACKGROUND Accumulation of lipids within coronary plaques is an important process in disease progression. However, gray-scale intravascular ultrasound images cannot detect plaque lipids effectively. Radiofrequency signal analysis could provide more accurate information on preclinical coronary plaques. METHODS We analyzed 29 zones of mild atheroma in human coronary arteries acquired at autopsy...
متن کاملAssessment of coronary plaque morphology by contrast-enhanced computed tomographic angiography: comparison with intravascular ultrasound.
BACKGROUND Computed tomographic (CT) angiography provides accurate noninvasive assessment for coronary artery stenosis. The ability of CT angiography to determine plaque morphology remains unclear. METHODS Twelve patients undergoing intravascular ultrasound for clinical indications underwent CT angiography for the evaluation of plaque morphology. Plaque morphology was classified as (1) soft, ...
متن کامل